Construction of A Complete Measure
Given a (possibly incomplete) measure space (X, Σ, μ), there is an extension (X, Σ0, μ0) of this measure space that is complete. The smallest such extension (i.e. the smallest σ-algebra Σ0) is called the completion of the measure space.
The completion can be constructed as follows:
- let Z be the set of all subsets of μ-measure zero subsets of X (intuitively, those elements of Z that are not already in Σ are the ones preventing completeness from holding true);
- let Σ0 be the σ-algebra generated by Σ and Z (i.e. the smallest σ-algebra that contains every element of Σ and of Z);
- there is a unique extension μ0 of μ to Σ0 given by the infimum
Then (X, Σ0, μ0) is a complete measure space, and is the completion of (X, Σ, μ).
In the above construction it can be shown that every member of Σ0 is of the form A ∪ B for some A ∈ Σ and some B ∈ Z, and
Read more about this topic: Complete Measure
Famous quotes containing the words construction of, construction, complete and/or measure:
“No real vital character in fiction is altogether a conscious construction of the author. On the contrary, it may be a sort of parasitic growth upon the authors personality, developing by internal necessity as much as by external addition.”
—T.S. (Thomas Stearns)
“Theres no art
To find the minds construction in the face:
He was a gentleman on whom I built
An absolute trust.”
—William Shakespeare (15641616)
“Much that is urged on us new parents is useless, because we didnt really choose it. It was pushed on us. Itwhether it be Raffi videos, French lessons, or the complete works of Brazeltonmight be just right for you and your particular child. But it is only right when you feel that it is. You know your family best; you decide.”
—Sonia Taitz (20th century)
“What we know partakes in no small measure of the nature of what has so happily been called the unutterable or ineffable, so that any attempt to utter or eff it is doomed to fail, doomed, doomed to fail.”
—Samuel Beckett (19061989)