Complete Measure - Construction of A Complete Measure

Construction of A Complete Measure

Given a (possibly incomplete) measure space (X, Σ, μ), there is an extension (X, Σ0, μ0) of this measure space that is complete. The smallest such extension (i.e. the smallest σ-algebra Σ0) is called the completion of the measure space.

The completion can be constructed as follows:

  • let Z be the set of all subsets of μ-measure zero subsets of X (intuitively, those elements of Z that are not already in Σ are the ones preventing completeness from holding true);
  • let Σ0 be the σ-algebra generated by Σ and Z (i.e. the smallest σ-algebra that contains every element of Σ and of Z);
  • there is a unique extension μ0 of μ to Σ0 given by the infimum

Then (X, Σ0, μ0) is a complete measure space, and is the completion of (X, Σ, μ).

In the above construction it can be shown that every member of Σ0 is of the form AB for some A ∈ Σ and some BZ, and

Read more about this topic:  Complete Measure

Famous quotes containing the words construction of, construction, complete and/or measure:

    The construction of life is at present in the power of facts far more than convictions.
    Walter Benjamin (1892–1940)

    Striving toward a goal puts a more pleasing construction on our advance toward death.
    Mason Cooley (b. 1927)

    Reporters for tabloid newspapers beat a path to the park entrance each summer when the national convention of nudists is held, but the cult’s requirement that visitors disrobe is an obstacle to complete coverage of nudist news. Local residents interested in the nudist movement but as yet unwilling to affiliate make observations from rowboats in Great Egg Harbor River.
    —For the State of New Jersey, U.S. public relief program (1935-1943)

    A solitary traveler whom we saw perambulating in the distance loomed like a giant. He appeared to walk slouchingly, as if held up from above by straps under his shoulders, as much as supported by the plain below. Men and boys would have appeared alike at a little distance, there being no object by which to measure them. Indeed, to an inlander, the Cape landscape is a constant mirage.
    Henry David Thoreau (1817–1862)