In mathematics, a complete measure (or, more precisely, a complete measure space) is a measure space in which every subset of every null set is measurable (having measure zero). More formally, (X, Σ, μ) is complete if and only if
Read more about Complete Measure: Motivation, Construction of A Complete Measure, Examples, Properties
Famous quotes containing the words complete and/or measure:
“In the course of the actual attainment of selfish endsan attainment conditioned in this way by universalitythere is formed a system of complete interdependence, wherein the livelihood, happiness, and legal status of one man is interwoven with the livelihood, happiness, and rights of all. On this system, individual happiness, etc. depend, and only in this connected system are they actualized and secured.”
—Georg Wilhelm Friedrich Hegel (17701831)
“Speech is the twin of my vision, it is unequal to measure itself,
It provokes me forever, it says sarcastically,
Walt you contain enough, why dont you let it out then?”
—Walt Whitman (18191892)