Ring Homomorphisms
As usual in algebra, a function f between two objects that respects the structures of the objects in question is called homomorphism. In the case of rings, a ring homomorphism is a map f : R → S such that
- f(a + b) = f(a) + f(b), f(ab) = f(a)f(b) and f(1) = 1.
These conditions ensure f(0) = 0, but the requirement that the multiplicative identity element 1 is preserved under f would not follow from the two remaining properties. In such a situation S is also called an R-algebra, by understanding that s in S may be multiplied by some r of R, by setting
- r · s := f(r) · s.
The kernel and image of f are defined by ker (f) = {r ∈ R, f(r) = 0} and im (f) = f(R) = {f(r), r ∈ R}. The kernel is an ideal of R, and the image is a subring of S.
Read more about this topic: Commutative Ring
Famous quotes containing the word ring:
“Tell me where is fancy bred,
Or in the heart or in the head?
How begot, how nourished?
Reply, reply.
It is engendered in the eyes,
With gazing fed, and fancy dies
In the cradle where it lies.
Let us all ring fancys knell.
Ill begin it. Ding, dong, bell.”
—William Shakespeare (15641616)