Closed Manifold - Contrasting Terms

Contrasting Terms

A compact manifold means a "manifold" that is compact as a topological space, but possibly has boundary. More precisely, it is a compact manifold with boundary (the boundary may be empty). By contrast, a closed manifold is compact without boundary.

An open manifold is a manifold without boundary with no compact component. For a connected manifold, "open" is equivalent to "without boundary and non-compact", but for a disconnected manifold, open is stronger. For instance, the disjoint union of a circle and the line is non-compact, but is not an open manifold, since one component (the circle) is compact.

The notion of closed manifold is unrelated with that of a closed set. A disk with its boundary is a closed set, but not a closed manifold.

Read more about this topic:  Closed Manifold

Famous quotes containing the words contrasting and/or terms:

    Humour is the describing the ludicrous as it is in itself; wit is the exposing it, by comparing or contrasting it with something else. Humour is, as it were, the growth of nature and accident; wit is the product of art and fancy.
    William Hazlitt (1778–1830)

    Talleyrand said that two things are essential in life: to give good dinners and to keep on fair terms with women. As the years pass and fires cool, it can become unimportant to stay always on fair terms either with women or one’s fellows, but a wide and sensitive appreciation of fine flavours can still abide with us, to warm our hearts.
    M.F.K. Fisher (b. 1908)