Closed Manifold

In mathematics, a closed manifold is a type of topological space, namely a compact manifold without boundary. In contexts where no boundary is possible, any compact manifold is a closed manifold.

The simplest example is a circle, which is a compact one-dimensional manifold. Other examples of closed manifolds are the torus and the Klein bottle. As a counterexample, the real line is not a closed manifold because it is not compact. A disk is a compact two-dimensional manifold, but is not a closed manifold because it has a boundary.

Compact manifolds are, in an intuitive sense, "finite". By the basic properties of compactness, a closed manifold is the disjoint union of a finite number of connected closed manifolds. One of the most basic objectives of geometric topology is to understand what the supply of possible closed manifolds is.

All compact topological manifolds can be embedded into for some n, by the Whitney embedding theorem.

Read more about Closed Manifold:  Contrasting Terms, Use in Physics

Famous quotes containing the words closed and/or manifold:

    With two sons born eighteen months apart, I operated mainly on automatic pilot through the ceaseless activity of their early childhood. I remember opening the refrigerator late one night and finding a roll of aluminum foil next to a pair of small red tennies. Certain that I was responsible for the refrigerated shoes, I quickly closed the door and ran upstairs to make sure I had put the babies in their cribs instead of the linen closet.
    Mary Kay Blakely (20th century)

    There must be no cessation
    Of motion, or of the noise of motion,
    The renewal of noise
    And manifold continuation....
    Wallace Stevens (1879–1955)