Closed Manifold

In mathematics, a closed manifold is a type of topological space, namely a compact manifold without boundary. In contexts where no boundary is possible, any compact manifold is a closed manifold.

The simplest example is a circle, which is a compact one-dimensional manifold. Other examples of closed manifolds are the torus and the Klein bottle. As a counterexample, the real line is not a closed manifold because it is not compact. A disk is a compact two-dimensional manifold, but is not a closed manifold because it has a boundary.

Compact manifolds are, in an intuitive sense, "finite". By the basic properties of compactness, a closed manifold is the disjoint union of a finite number of connected closed manifolds. One of the most basic objectives of geometric topology is to understand what the supply of possible closed manifolds is.

All compact topological manifolds can be embedded into for some n, by the Whitney embedding theorem.

Read more about Closed Manifold:  Contrasting Terms, Use in Physics

Famous quotes containing the words closed and/or manifold:

    Because you live, O Christ,
    the spirit bird of hope is freed for flying,
    our cages of despair no longer keep us closed and life-denying.
    The stone has rolled away and death cannot imprison!
    O sing this Easter Day, for Jesus Christ has risen!
    Shirley Erena Murray (20th century)

    Before abstraction everything is one, but one like chaos; after abstraction everything is united again, but this union is a free binding of autonomous, self-determined beings. Out of a mob a society has developed, chaos has been transformed into a manifold world.
    Novalis [Friedrich Von Hardenberg] (1772–1801)