In A Metric Space
To define Cauchy sequences in any metric space X, the absolute value is replaced by the distance (where d : X × X → R with some specific properties, see Metric (mathematics)) between and .
Formally, given a metric space (X, d), a sequence
is Cauchy, if for every positive real number ε > 0 there is a positive integer N such that for all natural numbers m,n > N, the distance
Roughly speaking, the terms of the sequence are getting closer and closer together in a way that suggests that the sequence ought to have a limit in X. Nonetheless, such a limit does not always exist within X.
Read more about this topic: Cauchy Sequence
Famous quotes containing the word space:
“No being exists or can exist which is not related to space in some way. God is everywhere, created minds are somewhere, and body is in the space that it occupies; and whatever is neither everywhere nor anywhere does not exist. And hence it follows that space is an effect arising from the first existence of being, because when any being is postulated, space is postulated.”
—Isaac Newton (16421727)