Universal Constructions, Limits, and Colimits
Using the language of category theory, many areas of mathematical study can be cast into appropriate categories, such as the categories of all sets, groups, topologies, and so on. These categories surely have some objects that are "special" in a certain way, such as the empty set or the product of two topologies, yet in the definition of a category, objects are considered to be atomic, i.e., we do not know whether an object A is a set, a topology, or any other abstract concept – hence, the challenge is to define special objects without referring to the internal structure of those objects. But how can we define the empty set without referring to elements, or the product topology without referring to open sets?
The solution is to characterize these objects in terms of their relations to other objects, as given by the morphisms of the respective categories. Thus, the task is to find universal properties that uniquely determine the objects of interest. Indeed, it turns out that numerous important constructions can be described in a purely categorical way. The central concept which is needed for this purpose is called categorical limit, and can be dualized to yield the notion of a colimit.
Read more about this topic: Category Theory
Famous quotes containing the word universal:
“For universal love is as special an aspect as carnal love or any of the other kinds: all forms of mental and spiritual activity must be practiced and encouraged equally if the whole affair is to prosper. There is no cutting corners where the life of the soul is concerned....”
—John Ashbery (b. 1927)