Monoidal Category

A monoidal category is a category equipped with

  • a bifunctor called the tensor product or monoidal product,
  • an object called the unit object or identity object,
  • three natural isomorphisms subject to certain coherence conditions expressing the fact that the tensor operation
    • is associative: there is a natural isomorphism, called associator, with components ,
    • has as left and right identity: there are two natural isomorphisms and, respectively called left and right unitor, with components and .

The coherence conditions for these natural transformations are:

  • for all, and in, the pentagon diagram

commutes;

  • for all and in, the triangle diagram

commutes;

It follows from these three conditions that any such diagram (i.e. a diagram whose morphisms are built using, identities and tensor product) commutes: this is Mac Lane's "coherence theorem".

A strict monoidal category is one for which the natural isomorphisms α, λ and ρ are identities. Every monoidal category is monoidally equivalent to a strict monoidal category.

Read more about Monoidal Category:  Examples, Free Strict Monoidal Category

Famous quotes containing the word category:

    I see no reason for calling my work poetry except that there is no other category in which to put it.
    Marianne Moore (1887–1972)