Riemannian Manifold
The infinitesimal generator (and hence characteristic operator) of a Brownian motion on Rn is easily calculated to be ½Δ, where Δ denotes the Laplace operator. This observation is useful in defining Brownian motion on an m-dimensional Riemannian manifold (M, g): a Brownian motion on M is defined to be a diffusion on M whose characteristic operator in local coordinates xi, 1 ≤ i ≤ m, is given by ½ΔLB, where ΔLB is the Laplace–Beltrami operator given in local coordinates by
where = −1 in the sense of the inverse of a square matrix.
Read more about this topic: Brownian Motion
Famous quotes containing the word manifold:
“As one who knows many things, the humanist loves the world precisely because of its manifold nature and the opposing forces in it do not frighten him. Nothing is further from him than the desire to resolve such conflicts ... and this is precisely the mark of the humanist spirit: not to evaluate contrasts as hostility but to seek human unity, that superior unity, for all that appears irreconcilable.”
—Stefan Zweig (18811942)