Geometric Brownian Motion
A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It is an important example of stochastic processes satisfying a stochastic differential equation (SDE); in particular, it is used in mathematical finance to model stock prices in the Black–Scholes model.
Read more about Geometric Brownian Motion: Technical Definition: The SDE, Solving The SDE, Properties of GBM, Multivariate Geometric Brownian Motion, Use of GBM in Finance, Extensions of GBM
Famous quotes containing the words geometric and/or motion:
“In mathematics he was greater
Than Tycho Brahe, or Erra Pater:
For he, by geometric scale,
Could take the size of pots of ale;
Resolve, by sines and tangents straight,
If bread and butter wanted weight;
And wisely tell what hour o th day
The clock doth strike, by algebra.”
—Samuel Butler (16121680)
“On board ship there are many sources of joy of which the land knows nothing. You may flirt and dance at sixty; and if you are awkward in the turn of a valse, you may put it down to the motion of the ship. You need wear no gloves, and may drink your soda-and-brandy without being ashamed of it.”
—Anthony Trollope (18151882)