Brauer Group

In mathematics, the Brauer group of a field K is an abelian group whose elements are Morita equivalence classes of central simple algebras of finite rank over K and addition is induced by the tensor product of algebras. It arose out of attempts to classify division algebras over a field and is named after the algebraist Richard Brauer. The group may also be defined in terms of Galois cohomology. More generally, the Brauer group of a scheme is defined in terms of Azumaya algebras.

Read more about Brauer Group:  Construction, Examples, Brauer Group and Class Field Theory, Properties, General Theory

Famous quotes containing the word group:

    The poet who speaks out of the deepest instincts of man will be heard. The poet who creates a myth beyond the power of man to realize is gagged at the peril of the group that binds him. He is the true revolutionary: he builds a new world.
    Babette Deutsch (1895–1982)