Brauer Group - Brauer Group and Class Field Theory

Brauer Group and Class Field Theory

The notion of Brauer group plays an important role in the modern formulation of the class field theory. If Kv is a non-archimedean local field, there is a canonical isomorphism invv: Br(Kv) → Q/Z constructed in local class field theory. An element of the Brauer group of order n can be represented by a cyclic division algebra of dimension n2.

The case of a global field K is addressed by the global class field theory. If D is a central simple algebra over K and v is a valuation then DKv is a central simple algebra over Kv, the local completion of K at v. This defines a homomorphism from the Brauer group of K into the Brauer group of Kv. A given central simple algebra D splits for all but finitely many v, so that the image of D under almost all such homomorphisms is 0. The Brauer group Br(K) fits into an exact sequence

where S is the set of all valuations of K and the right arrow is the direct sum of the local invariants and the Brauer group of the real numbers is identified with (1/2)Z/Z. The injectivity of the left arrow is the content of the Albert–Brauer–Hasse–Noether theorem. Exactness in the middle term is a deep fact from the global class field theory. The group Q/Z on the right may be interpreted as the "Brauer group" of the class formation of idele classes associated to K.

Read more about this topic:  Brauer Group

Famous quotes containing the words group, class, field and/or theory:

    It’s important to remember that feminism is no longer a group of organizations or leaders. It’s the expectations that parents have for their daughters, and their sons, too. It’s the way we talk about and treat one another. It’s who makes the money and who makes the compromises and who makes the dinner. It’s a state of mind. It’s the way we live now.
    Anna Quindlen (20th century)

    No human being is innocent, but there is a class of innocent human actions called Games.
    —W.H. (Wystan Hugh)

    Is not the tremendous strength in men of the impulse to creative work in every field precisely due to their feeling of playing a relatively small part in the creation of living beings, which constantly impels them to an overcompensation in achievement?
    Karen Horney (1885–1952)

    Every theory is a self-fulfilling prophecy that orders experience into the framework it provides.
    Ruth Hubbard (b. 1924)