Brauer Group - Brauer Group and Class Field Theory

Brauer Group and Class Field Theory

The notion of Brauer group plays an important role in the modern formulation of the class field theory. If Kv is a non-archimedean local field, there is a canonical isomorphism invv: Br(Kv) → Q/Z constructed in local class field theory. An element of the Brauer group of order n can be represented by a cyclic division algebra of dimension n2.

The case of a global field K is addressed by the global class field theory. If D is a central simple algebra over K and v is a valuation then DKv is a central simple algebra over Kv, the local completion of K at v. This defines a homomorphism from the Brauer group of K into the Brauer group of Kv. A given central simple algebra D splits for all but finitely many v, so that the image of D under almost all such homomorphisms is 0. The Brauer group Br(K) fits into an exact sequence

where S is the set of all valuations of K and the right arrow is the direct sum of the local invariants and the Brauer group of the real numbers is identified with (1/2)Z/Z. The injectivity of the left arrow is the content of the Albert–Brauer–Hasse–Noether theorem. Exactness in the middle term is a deep fact from the global class field theory. The group Q/Z on the right may be interpreted as the "Brauer group" of the class formation of idele classes associated to K.

Read more about this topic:  Brauer Group

Famous quotes containing the words group, class, field and/or theory:

    The government of the United States at present is a foster-child of the special interests. It is not allowed to have a voice of its own. It is told at every move, “Don’t do that, You will interfere with our prosperity.” And when we ask: “where is our prosperity lodged?” a certain group of gentlemen say, “With us.”
    Woodrow Wilson (1856–1924)

    There is ... a class of fancies, of exquisite delicacy, which are not thoughts, and to which, as yet, I have found it absolutely impossible to adapt language.... Now, so entire is my faith in the power of words, that at times, I have believed it possible to embody even the evanescence of fancies such as I have attempted to describe.
    Edgar Allan Poe (1809–1849)

    Love to chawnk green apples an’ go swimmin’ in the
    lake.—
    Hate to take the castor-ile they give for belly-ache!
    ‘Most all the time, the whole year round, there ain’t no flies on
    me,
    But jest ‘fore Christmas I’m as good as I kin be!
    —Eugene Field (1850–1895)

    [Anarchism] is the philosophy of the sovereignty of the individual. It is the theory of social harmony. It is the great, surging, living truth that is reconstructing the world, and that will usher in the Dawn.
    Emma Goldman (1869–1940)