General Theory
For an arbitrary field K, the Brauer group may be expressed in terms of Galois cohomology as follows:
Here, Ks is the separable closure of K, which coincides with the algebraic closure when K is a perfect field.
A generalisation of the Brauer group to the case of commutative rings by M. Auslander and O. Goldman, and more generally to schemes, was introduced by Alexander Grothendieck. In their approach, central simple algebras over a field are replaced with Azumaya algebras.
Read more about this topic: Brauer Group
Famous quotes containing the words general and/or theory:
“As to the rout that is made about people who are ruined by extravagance, it is no matter to the nation that some individuals suffer. When so much general productive exertion is the consequence of luxury, the nation does not care though there are debtors in gaol; nay, they would not care though their creditors were there too.”
—Samuel Johnson (17091784)
“The human species, according to the best theory I can form of it, is composed of two distinct races, the men who borrow and the men who lend.”
—Charles Lamb (17751834)