Binomial Theorem - Statement of The Theorem

Statement of The Theorem

According to the theorem, it is possible to expand any power of x + y into a sum of the form

(x+y)^n = {n \choose 0}x^n y^0 + {n \choose 1}x^{n-1}y^1 + {n \choose 2}x^{n-2}y^2 + \cdots + {n \choose n-1}x^1 y^{n-1} + {n \choose n}x^0 y^n,

where each is a specific positive integer known as binomial coefficient. This formula is also referred to as the Binomial Formula or the Binomial Identity. Using summation notation, it can be written as

(x+y)^n = \sum_{k=0}^n {n \choose k}x^{n-k}y^k = \sum_{k=0}^n {n \choose k}x^{k}y^{n-k}.

The final expression follows from the previous one by the symmetry of x and y in the first expression, and by comparison it follows that the sequence of binomial coefficients in the formula is symmetrical.

A variant of the binomial formula is obtained by substituting 1 for y, so that it involves only a single variable. In this form, the formula reads

or equivalently

Read more about this topic:  Binomial Theorem

Famous quotes containing the words statement of, statement and/or theorem:

    Eroticism has its own moral justification because it says that pleasure is enough for me; it is a statement of the individual’s sovereignty.
    Mario Vargas Llosa (b. 1936)

    A sentence is made up of words, a statement is made in words.... Statements are made, words or sentences are used.
    —J.L. (John Langshaw)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)