Binomial Theorem - Statement of The Theorem

Statement of The Theorem

According to the theorem, it is possible to expand any power of x + y into a sum of the form

(x+y)^n = {n \choose 0}x^n y^0 + {n \choose 1}x^{n-1}y^1 + {n \choose 2}x^{n-2}y^2 + \cdots + {n \choose n-1}x^1 y^{n-1} + {n \choose n}x^0 y^n,

where each is a specific positive integer known as binomial coefficient. This formula is also referred to as the Binomial Formula or the Binomial Identity. Using summation notation, it can be written as

(x+y)^n = \sum_{k=0}^n {n \choose k}x^{n-k}y^k = \sum_{k=0}^n {n \choose k}x^{k}y^{n-k}.

The final expression follows from the previous one by the symmetry of x and y in the first expression, and by comparison it follows that the sequence of binomial coefficients in the formula is symmetrical.

A variant of the binomial formula is obtained by substituting 1 for y, so that it involves only a single variable. In this form, the formula reads

or equivalently

Read more about this topic:  Binomial Theorem

Famous quotes containing the words statement of the, statement of, statement and/or theorem:

    Eroticism has its own moral justification because it says that pleasure is enough for me; it is a statement of the individual’s sovereignty.
    Mario Vargas Llosa (b. 1936)

    The most distinct and beautiful statement of any truth must take at last the mathematical form.
    Henry David Thoreau (1817–1862)

    If we do take statements to be the primary bearers of truth, there seems to be a very simple answer to the question, what is it for them to be true: for a statement to be true is for things to be as they are stated to be.
    —J.L. (John Langshaw)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)