A division algorithm is an algorithm which, given two integers N and D, computes their quotient and/or remainder, the result of division. Some are applied by hand, while others are employed by digital circuit designs and software.
Division algorithms fall into two main categories: slow division and fast division. Slow division algorithms produce one digit of the final quotient per iteration. Examples of slow division include restoring, non-performing restoring, non-restoring, and SRT division. Fast division methods start with a close approximation to the final quotient and produce twice as many digits of the final quotient on each iteration. Newton-Raphson and Goldschmidt fall into this category.
Discussion will refer to the form where
- Q = Quotient
- N = Numerator (dividend)
- D = Denominator (divisor).
Read more about Division Algorithm: Division By Repeated Subtraction, Long Division, Integer Division (unsigned) With Remainder, Slow Division Methods, Large Integer Methods, Division By A Constant, Rounding Error
Famous quotes containing the word division:
“If the technology cannot shoulder the entire burden of strategic change, it nevertheless can set into motion a series of dynamics that present an important challenge to imperative control and the industrial division of labor. The more blurred the distinction between what workers know and what managers know, the more fragile and pointless any traditional relationships of domination and subordination between them will become.”
—Shoshana Zuboff (b. 1951)