In probability theory and statistics, the negative binomial distribution is a discrete probability distribution of the number of successes in a sequence of Bernoulli trials before a specified (non-random) number of failures (denoted r) occur. For example, if one throws a die repeatedly until the third time “1” appears, then the probability distribution of the number of non-“1”s that had appeared will be negative binomial.
The Pascal distribution (after Blaise Pascal) and Polya distribution (for George Pólya) are special cases of the negative binomial. There is a convention among engineers, climatologists, and others to reserve “negative binomial” in a strict sense or “Pascal” for the case of an integer-valued stopping-time parameter r, and use “Polya” for the real-valued case. The Polya distribution more accurately models occurrences of “contagious” discrete events, like tornado outbreaks, than the Poisson distribution by allowing the mean and variance to be different, unlike the Poisson. “Contagious” events have positively correlated occurrences causing a larger variance than if the occurrences were independent, due to a positive covariance term.
Read more about Negative Binomial Distribution: Definition, Related Distributions
Famous quotes containing the words negative and/or distribution:
“There is no reason why parents who work hard at a job to support a family, who nurture children during the hours at home, and who have searched for and selected the best [daycare] arrangement possible for their children need to feel anxious and guilty. It almost seems as if our culture wants parents to experience these negative feelings.”
—Gwen Morgan (20th century)
“My topic for Army reunions ... this summer: How to prepare for war in time of peace. Not by fortifications, by navies, or by standing armies. But by policies which will add to the happiness and the comfort of all our people and which will tend to the distribution of intelligence [and] wealth equally among all. Our strength is a contented and intelligent community.”
—Rutherford Birchard Hayes (18221893)