Real Versus Complex Analytic Functions
Real and complex analytic functions have important differences (one could notice that even from their different relationship with differentiability). Analyticity of complex functions is a more restrictive property, as it has more restrictive necessary conditions and complex analytic functions have more structure than their real-line counterparts.
According to Liouville's theorem, any bounded complex analytic function defined on the whole complex plane is constant. The corresponding statement for real analytic functions, with the complex plane replaced by the real line, is clearly false; this is illustrated by
Also, if a complex analytic function is defined in an open ball around a point x0, its power series expansion at x0 is convergent in the whole ball (analyticity of holomorphic functions). This statement for real analytic functions (with open ball meaning an open interval of the real line rather than an open disk of the complex plane) is not true in general; the function of the example above gives an example for x0 = 0 and a ball of radius exceeding 1, since the power series 1 − x2 + x4 − x6... diverges for |x| > 1.
Any real analytic function on some open set on the real line can be extended to a complex analytic function on some open set of the complex plane. However, not every real analytic function defined on the whole real line can be extended to a complex function defined on the whole complex plane. The function ƒ(x) defined in the paragraph above is a counterexample, as it is not defined for x = ±i. This explains why the Taylor series of ƒ(x) diverges for |x| > 1, i.e., the radius of convergence is 1 because the complexified function has a pole at distance 1 from the evaluation point 0 and no further poles within the open disc of radius 1 around the evaluation point.
Read more about this topic: Analytic Function
Famous quotes containing the words real, complex, analytic and/or functions:
“For if the proper study of mankind is man, it is evidently more sensible to occupy yourself with the coherent, substantial and significant creatures of fiction than with the irrational and shadowy figures of real life.”
—W. Somerset Maugham (18741965)
“It would be naive to think that peace and justice can be achieved easily. No set of rules or study of history will automatically resolve the problems.... However, with faith and perseverance,... complex problems in the past have been resolved in our search for justice and peace. They can be resolved in the future, provided, of course, that we can think of five new ways to measure the height of a tall building by using a barometer.”
—Jimmy Carter (James Earl Carter, Jr.)
“You, that have not lived in thought but deed,
Can have the purity of a natural force,
But I, whose virtues are the definitions
Of the analytic mind, can neither close
The eye of the mind nor keep my tongue from speech.”
—William Butler Yeats (18651939)
“If photography is allowed to stand in for art in some of its functions it will soon supplant or corrupt it completely thanks to the natural support it will find in the stupidity of the multitude. It must return to its real task, which is to be the servant of the sciences and the arts, but the very humble servant, like printing and shorthand which have neither created nor supplanted literature.”
—Charles Baudelaire (18211867)