Analyticity and Differentiability
As noted above, any analytic function (real or complex) is infinitely differentiable (also known as smooth, or C∞). (Note that this differentiability is in the sense of real variables; compare complex derivatives below.) There exist smooth real functions which are not analytic: see non-analytic smooth function. In fact there are many such functions.
The situation is quite different when one considers complex analytic functions and complex derivatives. It can be proved that any complex function differentiable (in the complex sense) in an open set is analytic. Consequently, in complex analysis, the term analytic function is synonymous with holomorphic function.
Read more about this topic: Analytic Function
Related Subjects
Related Phrases
Related Words