Absolute Continuity

Absolute Continuity

In mathematics, the relationship between the two central operations of calculus, differentiation and integration, stated by fundamental theorem of calculus in the framework of Riemann integration, is generalized in several directions, using Lebesgue integration and absolute continuity. For real-valued functions on the real line two interrelated notions appear, absolute continuity of functions and absolute continuity of measures. These two notions are generalized in different directions. The usual derivative of a function is related to the Radon–Nikodym derivative, or density, of a measure.

Read more about Absolute Continuity:  Absolute Continuity of Functions, Relation Between The Two Notions of Absolute Continuity

Famous quotes containing the words absolute and/or continuity:

    The teacher must derive not only the capacity, but the desire, to observe natural phenomena. In our system, she must become a passive, much more than an active, influence, and her passivity shall be composed of anxious scientific curiosity and of absolute respect for the phenomenon which she wishes to observe. The teacher must understand and feel her position of observer: the activity must lie in the phenomenon.
    Maria Montessori (1870–1952)

    There is never a beginning, there is never an end, to the inexplicable continuity of this web of God, but always circular power returning into itself.
    Ralph Waldo Emerson (1803–1882)