Absolute Continuity - Relation Between The Two Notions of Absolute Continuity

Relation Between The Two Notions of Absolute Continuity

A finite measure μ on Borel subsets of the real line is absolutely continuous with respect to Lebesgue measure if and only if the point function

is locally an absolutely continuous real function. In other words, a function is locally absolutely continuous if and only if its distributional derivative is a measure that is absolutely continuous with respect to the Lebesgue measure.

If the absolute continuity holds then the Radon-Nikodym derivative of μ is equal almost everywhere to the derivative of F.

More generally, the measure μ is assumed to be locally finite (rather than finite) and F(x) is defined as μ((0,x]) for x>0, 0 for x=0, and -μ((x,0]) for x<0. In this case μ is the Lebesgue-Stieltjes measure generated by F. The relation between the two notions of absolute continuity still holds.

Read more about this topic:  Absolute Continuity

Famous quotes containing the words relation, notions, absolute and/or continuity:

    The foregoing generations beheld God and nature face to face; we, through their eyes. Why should not we also enjoy an original relation to the universe? Why should not we have a poetry and philosophy of insight and not of tradition, and a religion by revelation to us, and not the history of theirs?
    Ralph Waldo Emerson (1803–1882)

    Your notions of friendship are new to me; I believe every man is born with his quantum, and he cannot give to one without robbing another. I very well know to whom I would give the first place in my friendship, but they are not in the way, I am condemned to another scene, and therefore I distribute it in pennyworths to those about me, and who displease me least, and should do the same to my fellow prisoners if I were condemned to a jail.
    Jonathan Swift (1667–1745)

    As liberty of thought is absolute, so is liberty of speech, which is “inseparable” from the liberty of thought. Liberty of speech, moreover, is essential not only for its own sake but for the sake of truth, which requires absolute liberty for the utterance of unpopular and even demonstrably false opinions.
    Gertrude Himmelfarb (b. 1922)

    Only the family, society’s smallest unit, can change and yet maintain enough continuity to rear children who will not be “strangers in a strange land,” who will be rooted firmly enough to grow and adapt.
    Salvador Minuchin (20th century)