Absolute Continuity of Functions
It may happen that a continuous function f is differentiable almost everywhere on, its derivative f ′ is Lebesgue integrable, and nevertheless the integral of f ′ differs from the increment of f. For example, this happens for the Cantor function, which means that this function is not absolutely continuous. Absolute continuity of functions is a smoothness property which is stricter than continuity and uniform continuity.
Read more about this topic: Absolute Continuity
Famous quotes containing the words absolute, continuity and/or functions:
“Imagination, which in truth
Is but another name for absolute power
And clearest insight, amplitude of mind,
And reason, in her most exalted mood.”
—William Wordsworth (17701850)
“Every society consists of men in the process of developing from children into parents. To assure continuity of tradition, society must early prepare for parenthood in its children; and it must take care of the unavoidable remnants of infantility in its adults. This is a large order, especially since a society needs many beings who can follow, a few who can lead, and some who can do both, alternately or in different areas of life.”
—Erik H. Erikson (19041994)
“When Western people train the mind, the focus is generally on the left hemisphere of the cortex, which is the portion of the brain that is concerned with words and numbers. We enhance the logical, bounded, linear functions of the mind. In the East, exercises of this sort are for the purpose of getting in tune with the unconsciousto get rid of boundaries, not to create them.”
—Edward T. Hall (b. 1914)