Absolute Continuity of Functions
It may happen that a continuous function f is differentiable almost everywhere on, its derivative f ′ is Lebesgue integrable, and nevertheless the integral of f ′ differs from the increment of f. For example, this happens for the Cantor function, which means that this function is not absolutely continuous. Absolute continuity of functions is a smoothness property which is stricter than continuity and uniform continuity.
Read more about this topic: Absolute Continuity
Famous quotes containing the words absolute, continuity and/or functions:
“All forms of beauty, like all possible phenomena, contain an element of the eternal and an element of the transitoryof the absolute and of the particular. Absolute and eternal beauty does not exist, or rather it is only an abstraction creamed from the general surface of different beauties. The particular element in each manifestation comes from the emotions: and just as we have our own particular emotions, so we have our own beauty.”
—Charles Baudelaire (18211867)
“Continuous eloquence wearies.... Grandeur must be abandoned to be appreciated. Continuity in everything is unpleasant. Cold is agreeable, that we may get warm.”
—Blaise Pascal (16231662)
“Those things which now most engage the attention of men, as politics and the daily routine, are, it is true, vital functions of human society, but should be unconsciously performed, like the corresponding functions of the physical body.”
—Henry David Thoreau (18171862)