Absolute Continuity of Functions
It may happen that a continuous function f is differentiable almost everywhere on, its derivative f ′ is Lebesgue integrable, and nevertheless the integral of f ′ differs from the increment of f. For example, this happens for the Cantor function, which means that this function is not absolutely continuous. Absolute continuity of functions is a smoothness property which is stricter than continuity and uniform continuity.
Read more about this topic: Absolute Continuity
Famous quotes containing the words absolute, continuity and/or functions:
“... the absolute freedom of woman will be the dawn of the day of mans regeneration. In raising her he will elevate himself.”
—Tennessee Claflin (18461923)
“The dialectic between change and continuity is a painful but deeply instructive one, in personal life as in the life of a people. To see the light too often has meant rejecting the treasures found in darkness.”
—Adrienne Rich (b. 1929)
“The English masses are lovable: they are kind, decent, tolerant, practical and not stupid. The tragedy is that there are too many of them, and that they are aimless, having outgrown the servile functions for which they were encouraged to multiply. One day these huge crowds will have to seize power because there will be nothing else for them to do, and yet they neither demand power nor are ready to make use of it; they will learn only to be bored in a new way.”
—Cyril Connolly (19031974)