Definitions
See also: Hecke algebraLet G be a locally compact unimodular topological group and K a compact subgroup and let H1 = L2(G/K). Thus H1 admits a unitary representation π of G by left translation. This is a subrepresentation of the regular representation, since if H= L2(G) with left and right regular representations λ and ρ of G and P is the orthogonal projection
from H to H1 then H1 can naturally be identified with PH with the action of G given by the restriction of λ.
On the other hand by von Neumann's commutation theorem
where S' denotes the commutant of a set of operators S, so that
Thus the commutant of π is generated as a von Neumann algebra by operators
where f is a continuous function of compact support on G.
However Pρ(f) P is just the restriction of ρ(F) to H1, where
is the K-biinvariant continuous function of compact support obtained by averaging f by K on both sides.
Thus the commutant of π is generated by the restriction of the operators ρ(F) with F in Cc(K\G/K), the K-biinvariant continuous functions of compact support on G.
These functions form a * algebra under convolution with involution
often called the Hecke algebra for the pair (G, K).
Let A(K\G/K) denote the C* algebra generated by the operators ρ(F) on H1.
The pair (G, K) is said to be a Gelfand pair if one, and hence all, of the following algebras are commutative:
Since A(K\G/K) is a commutative C* algebra, by the Gelfand–Naimark theorem it has the form C0(X), where X is the locally compact space of norm continuous * homomorphisms of A(K\G/K) into C.
A concrete realization of the * homomorphisms in X as K-biinvariant uniformly bounded functions on G is obtained as follows.
Because of the estimate
the representation π of Cc(K\G/K) in A(K\G/K) extends by continuity to L1(K\G/K), the * algebra of K-biinvariant integrable functions. The image forms a dense * subalgebra of A(K\G/K). The restriction of a * homomorphism χ continuous for the operator norm is also continuous for the norm ||·||1. Since the Banach space dual of L1 is L∞, it follows that
for some unique uniformly bounded K-biinvariant function h on G. These functions h are exactly the zonal spherical functions for the pair (G, K).
Read more about this topic: Zonal Spherical Function
Famous quotes containing the word definitions:
“What I do not like about our definitions of genius is that there is in them nothing of the day of judgment, nothing of resounding through eternity and nothing of the footsteps of the Almighty.”
—G.C. (Georg Christoph)
“Lord Byron is an exceedingly interesting person, and as such is it not to be regretted that he is a slave to the vilest and most vulgar prejudices, and as mad as the winds?
There have been many definitions of beauty in art. What is it? Beauty is what the untrained eyes consider abominable.”
—Edmond De Goncourt (18221896)