Complex Case
If G is a complex semisimple Lie group, it is the complexification of its maximal compact subgroup K. If and are their Lie algebras, then
Let T be a maximal torus in K with Lie algebra . Then
Let
be the Weyl group of T in K. Recall characters in Hom(T,T) are called weights and can be identified with elements of the weight lattice Λ in Hom(, R) = . There is a natural ordering on weights and very finite-dimensional irreducible representation (π, V) of K has a unique highest weight λ. The weights of the adjoint representation of K on are called roots and ρ is used to denote half the sum of the positive roots α, Weyl's character formula asserts that for z = exp X in T
where, for μ in, Aμ denotes the antisymmetrisation
and ε denotes the sign character of the finite reflection group W.
Weyl's denominator formula expresses the denominator Aρ as a product:
where the product is over the positive roots.
Weyl's dimension formula asserts that
where the inner product on is that associated with the Killing form on .
Now
- every irreducible representation of K extends holomorphically to the complexification G
- every irreducible character χλ(k) of K extends holomorphically to the complexification of K and .
- for every λ in Hom(A,T) =, there is a zonal spherical function φλ.
The Berezin–Harish–Chandra formula asserts that for X in
In other words:
- the zonal spherical functions on a complex semisimple Lie group are given by analytic continuation of the formula for the normalised characters.
One of the simplest proofs of this formula involves the radial component on A of the Laplacian on G, a proof formally parallel to Helgason's reworking of Freudenthal's classical proof of the Weyl character formula, using the radial component on T of the Laplacian on K.
In the latter case the class functions on K can be identified with W-invariant functions on T. The radial component of ΔK on T is just the expression for the restriction of ΔK to W-invariant functions on T, where it is given by the formula
where
for X in . If χ is a character with highest weight λ, it follows that φ = h·χ satisfies
Thus for every weight μ with non-zero Fourier coefficient in φ,
The classical argument of Freudenthal shows that μ + ρ must have the form s(λ + ρ) for some s in W, so the character formula follows from the antisymmetry of φ.
Similarly K-biinvariant functions on G can be identified with W(A)-invariant functions on A. The radial component of ΔG on A is just the expression for the restriction of ΔG to W(A)-invariant functions on A. It is given by the formula
where
for X in .
The Berezin–Harish–Chandra formula for a zonal spherical function φ can be established by introducing the antisymmetric function
which is an eigenfunction of the Laplacian ΔA. Since K is generated by copies of subgroups that are homomorphic images of SU(2) corresponding to simple roots, its complexification G is generated by the corresponding homomorphic images of SL(2,C). The formula for zonal spherical functions of SL(2,C) implies that f is a periodic function on with respect to some sublattice. Antisymmetry under the Weyl group and the argument of Freudenthal again imply that ψ must have the stated form up to a multiplicative constant, which can be determined using the Weyl dimension formula.
Read more about this topic: Zonal Spherical Function
Famous quotes containing the words complex and/or case:
“I have met charming people, lots who would be charming if they hadnt got a complex about the British and everyone has pleasant and cheerful manners and I like most of the American voices. On the other hand I dont believe they have any God and their hats are frightful. On balance I prefer the Arabs.”
—Freya Stark (18931993)
“I am bound to tell what I am told, but not in every case to believe it.”
—Herodotus (c. 484424 B.C.)