Formal Statement
A mathematically precise statement of universality for the Riemann zeta-function ζ(s) follows.
Let U be a compact subset of the strip
such that the complement of U is connected. Let f : U → C be a continuous function on U which is holomorphic on the interior of U and does not have any zeros in U. Then for any ε > 0 there exists a t ≥ 0 such that
Even more: the lower density of the set of values t which do the job is positive, as is expressed by the following inequality about a limit inferior.
where λ denotes the Lebesgue measure on the real numbers.
Read more about this topic: Zeta Function Universality
Famous quotes containing the words formal and/or statement:
“The bed is now as public as the dinner table and governed by the same rules of formal confrontation.”
—Angela Carter (19401992)
“The new statement will comprise the skepticisms, as well as the faiths of society, and out of unbeliefs a creed shall be formed. For, skepticisms are not gratuitous or lawless, but are limitations of the affirmative statement, and the new philosophy must take them in, and make affirmations outside of them, just as much as must include the oldest beliefs.”
—Ralph Waldo Emerson (18031882)