Zeta Function Universality - Formal Statement

Formal Statement

A mathematically precise statement of universality for the Riemann zeta-function ζ(s) follows.

Let U be a compact subset of the strip

such that the complement of U is connected. Let f : UC be a continuous function on U which is holomorphic on the interior of U and does not have any zeros in U. Then for any ε > 0 there exists a t ≥ 0 such that

Even more: the lower density of the set of values t which do the job is positive, as is expressed by the following inequality about a limit inferior.

 0 <
\liminf_{T\to\infty} \frac{1}{T}
\,\lambda\!\left( \left\{
t\in \mid \max_{s\in U} |\zeta(s+it)-f(s)| < \varepsilon
\right\} \right)

where λ denotes the Lebesgue measure on the real numbers.

Read more about this topic:  Zeta Function Universality

Famous quotes containing the words formal and/or statement:

    This is no argument against teaching manners to the young. On the contrary, it is a fine old tradition that ought to be resurrected from its current mothballs and put to work...In fact, children are much more comfortable when they know the guide rules for handling the social amenities. It’s no more fun for a child to be introduced to a strange adult and have no idea what to say or do than it is for a grownup to go to a formal dinner and have no idea what fork to use.
    Leontine Young (20th century)

    He that writes to himself writes to an eternal public. That statement only is fit to be made public, which you have come at in attempting to satisfy your own curiosity.
    Ralph Waldo Emerson (1803–1882)