Zeta Function Universality - Formal Statement

Formal Statement

A mathematically precise statement of universality for the Riemann zeta-function ζ(s) follows.

Let U be a compact subset of the strip

such that the complement of U is connected. Let f : UC be a continuous function on U which is holomorphic on the interior of U and does not have any zeros in U. Then for any ε > 0 there exists a t ≥ 0 such that

Even more: the lower density of the set of values t which do the job is positive, as is expressed by the following inequality about a limit inferior.

 0 <
\liminf_{T\to\infty} \frac{1}{T}
\,\lambda\!\left( \left\{
t\in \mid \max_{s\in U} |\zeta(s+it)-f(s)| < \varepsilon
\right\} \right)

where λ denotes the Lebesgue measure on the real numbers.

Read more about this topic:  Zeta Function Universality

Famous quotes containing the words formal and/or statement:

    Good gentlemen, look fresh and merrily.
    Let not our looks put on our purposes,
    But bear it as our Roman actors do,
    With untired spirits and formal constancy.
    William Shakespeare (1564–1616)

    Truth is used to vitalize a statement rather than devitalize it. Truth implies more than a simple statement of fact. “I don’t have any whisky,” may be a fact but it is not a truth.
    William Burroughs (b. 1914)