Zeta Function Universality

Zeta Function Universality

In mathematics, the universality of zeta-functions is the remarkable ability of the Riemann zeta-function and other, similar, functions, such as the Dirichlet L-functions, to approximate arbitrary non-vanishing holomorphic functions arbitrarily well.

The universality of the Riemann zeta function was first proven by Sergei Mikhailovitch Voronin in 1975 and is sometimes known as Voronin's Universality Theorem.

Read more about Zeta Function Universality:  Formal Statement, Discussion, Universality of Other Zeta Functions

Famous quotes containing the word function:

    The uses of travel are occasional, and short; but the best fruit it finds, when it finds it, is conversation; and this is a main function of life.
    Ralph Waldo Emerson (1803–1882)