Zeta Function Regularization

In mathematics and theoretical physics, zeta function regularization is a type of regularization or summability method that assigns finite values to divergent sums or products, and in particular can be used to define determinants and traces of some self-adjoint operators. The technique is now commonly applied to problems in physics, but has its origins in attempts to give precise meanings to ill-conditioned sums appearing in number theory.

Read more about Zeta Function Regularization:  Definition, Example, Relation To Other Regularizations, Heat Kernel Regularization, History

Famous quotes containing the word function:

    Think of the tools in a tool-box: there is a hammer, pliers, a saw, a screwdriver, a rule, a glue-pot, nails and screws.—The function of words are as diverse as the functions of these objects.
    Ludwig Wittgenstein (1889–1951)