In mathematics and theoretical physics, zeta function regularization is a type of regularization or summability method that assigns finite values to divergent sums or products, and in particular can be used to define determinants and traces of some self-adjoint operators. The technique is now commonly applied to problems in physics, but has its origins in attempts to give precise meanings to ill-conditioned sums appearing in number theory.
Read more about Zeta Function Regularization: Definition, Example, Relation To Other Regularizations, Heat Kernel Regularization, History
Famous quotes containing the word function:
“The uses of travel are occasional, and short; but the best fruit it finds, when it finds it, is conversation; and this is a main function of life.”
—Ralph Waldo Emerson (1803–1882)