Higher Dimensions
The concept translates to higher dimensions if multinomials in Cartesian coordinates are converted to hyperspherical coordinates, multiplied by a product of Jacobi Polynomials of the angular variables. In dimensions, the angular variables are Spherical harmonics, for example. Linear combinations of the powers define an orthogonal basis satisfying
- .
(Note that a factor is absorbed in the definition of here, whereas in the normalization is chosen slightly differently. This is largely a matter of taste, depending on whether one wishes to maintain an integer set of coefficients or prefers tighter formulas if the orthogonalization is involved.) The explicit representation is
for even, else identical to zero.
Read more about this topic: Zernike Polynomials
Famous quotes containing the words higher and/or dimensions:
“The higher one climbs the lonelier one is.”
—Mary Barnett Gilson (1877?)
“Why is it that many contemporary male thinkers, especially men of color, repudiate the imperialist legacy of Columbus but affirm dimensions of that legacy by their refusal to repudiate patriarchy?”
—bell hooks (b. c. 1955)