Zernike Polynomials - Higher Dimensions

Higher Dimensions

The concept translates to higher dimensions if multinomials in Cartesian coordinates are converted to hyperspherical coordinates, multiplied by a product of Jacobi Polynomials of the angular variables. In dimensions, the angular variables are Spherical harmonics, for example. Linear combinations of the powers define an orthogonal basis satisfying

.

(Note that a factor is absorbed in the definition of here, whereas in the normalization is chosen slightly differently. This is largely a matter of taste, depending on whether one wishes to maintain an integer set of coefficients or prefers tighter formulas if the orthogonalization is involved.) The explicit representation is

R_n^{(l)}(\rho) = \sqrt{2n+D}\sum_{s=0}^{(n-l)/2}
(-1)^s{(n-l)/2 \choose s}{n-s-1+D/2 \choose (n-l)/2}\rho^{n-2s}
=(-1)^{(n-l)/2}\sqrt{2n+D}\sum_{s=0}^{(n-l)/2}
(-1)^s{(n-l)/2 \choose s}
{s-1+(n+l+D)/2 \choose (n-l)/2} \rho^{2s+l}
=(-1)^{(n-l)/2}\sqrt{2n+D}{ (D+n+l)/2-1 \choose (n-l)/2}\rho^l
{}_2F_1( -(n-l)/2,(n+l+D)/2;l+D/2;\rho^2)

for even, else identical to zero.

Read more about this topic:  Zernike Polynomials

Famous quotes containing the words higher and/or dimensions:

    The true thrift is always to spend on the higher plane; to invest and invest, with keener avarice, that he may spend in spiritual creation, and not in augmenting animal existence. Nor is the man enriched, in repeating the old experiments of animal sensation; nor unless through new powers and ascending pleasures he knows himself by the actual experience of higher good to be already on the way to the highest.
    Ralph Waldo Emerson (1803–1882)

    I was surprised by Joe’s asking me how far it was to the Moosehorn. He was pretty well acquainted with this stream, but he had noticed that I was curious about distances, and had several maps. He and Indians generally, with whom I have talked, are not able to describe dimensions or distances in our measures with any accuracy. He could tell, perhaps, at what time we should arrive, but not how far it was.
    Henry David Thoreau (1817–1862)