Zernike Polynomials - Higher Dimensions

Higher Dimensions

The concept translates to higher dimensions if multinomials in Cartesian coordinates are converted to hyperspherical coordinates, multiplied by a product of Jacobi Polynomials of the angular variables. In dimensions, the angular variables are Spherical harmonics, for example. Linear combinations of the powers define an orthogonal basis satisfying

.

(Note that a factor is absorbed in the definition of here, whereas in the normalization is chosen slightly differently. This is largely a matter of taste, depending on whether one wishes to maintain an integer set of coefficients or prefers tighter formulas if the orthogonalization is involved.) The explicit representation is

R_n^{(l)}(\rho) = \sqrt{2n+D}\sum_{s=0}^{(n-l)/2}
(-1)^s{(n-l)/2 \choose s}{n-s-1+D/2 \choose (n-l)/2}\rho^{n-2s}
=(-1)^{(n-l)/2}\sqrt{2n+D}\sum_{s=0}^{(n-l)/2}
(-1)^s{(n-l)/2 \choose s}
{s-1+(n+l+D)/2 \choose (n-l)/2} \rho^{2s+l}
=(-1)^{(n-l)/2}\sqrt{2n+D}{ (D+n+l)/2-1 \choose (n-l)/2}\rho^l
{}_2F_1( -(n-l)/2,(n+l+D)/2;l+D/2;\rho^2)

for even, else identical to zero.

Read more about this topic:  Zernike Polynomials

Famous quotes containing the words higher and/or dimensions:

    A higher class, in the estimation and love of this city- building, market-going race of mankind, are the poets, who, from the intellectual kingdom, feed the thought and imagination with ideas and pictures which raise men out of the world of corn and money, and console them for the short-comings of the day, and the meanness of labor and traffic.
    Ralph Waldo Emerson (1803–1882)

    Is it true or false that Belfast is north of London? That the galaxy is the shape of a fried egg? That Beethoven was a drunkard? That Wellington won the battle of Waterloo? There are various degrees and dimensions of success in making statements: the statements fit the facts always more or less loosely, in different ways on different occasions for different intents and purposes.
    —J.L. (John Langshaw)