Word Problem For Groups - Partial Solution of The Word Problem

Partial Solution of The Word Problem

The word problem for a recursively presented group can be partially solved in the following sense:

Given a recursive presentation P = ⟨X|R⟩ for a group G, define:
then there is a partial recursive function fP such that:
f_P(\langle u,v \rangle) =
\left\{\begin{matrix}
0 &\mbox{if}\ \langle u,v \rangle \in S \\
\mbox{undefined/does not halt}\ &\mbox{if}\ \langle u,v \rangle \notin S
\end{matrix}\right.

More informally, there is an algorithm that halts if u=v, but does not do so otherwise.

It follows that to solve the word problem for P it is sufficient to construct a recursive function g such that:

g(\langle u,v \rangle) =
\left\{\begin{matrix}
0 &\mbox{if}\ \langle u,v \rangle \notin S \\
\mbox{undefined/does not halt}\ &\mbox{if}\ \langle u,v \rangle \in S
\end{matrix}\right.

However u=v in G if and only if uv−1=1 in G. It follows that to solve the word problem for P it is sufficient to construct a recursive function h such that:

h(x) =
\left\{\begin{matrix}
0 &\mbox{if}\ x\neq1\ \mbox{in}\ G \\
\mbox{undefined/does not halt}\ &\mbox{if}\ x=1\ \mbox{in}\ G
\end{matrix}\right.

Read more about this topic:  Word Problem For Groups

Famous quotes containing the words partial, solution, word and/or problem:

    Both the man of science and the man of art live always at the edge of mystery, surrounded by it. Both, as a measure of their creation, have always had to do with the harmonization of what is new with what is familiar, with the balance between novelty and synthesis, with the struggle to make partial order in total chaos.... This cannot be an easy life.
    J. Robert Oppenheimer (1904–1967)

    The truth of the thoughts that are here set forth seems to me unassailable and definitive. I therefore believe myself to have found, on all essential points, the final solution of the problems. And if I am not mistaken in this belief, then the second thing in which the value of this work consists is that it shows how little is achieved when these problems are solved.
    Ludwig Wittgenstein (1889–1951)

    As to spelling the very frequent word though with six letters instead of two, it is impossible to discuss it, as it is outside the range of common sanity. In comparison such a monstrosity as phlegm for flem is merely disgusting.
    George Bernard Shaw (1856–1950)

    Every child is an artist. The problem is how to remain an artist once he grows up.
    Pablo Picasso (1881–1973)