Simple Group

In mathematics, a simple group is a nontrivial group whose only normal subgroups are the trivial group and the group itself. A group that is not simple can be broken into two smaller groups, a normal subgroup and the quotient group, and the process can be repeated. If the group is finite, then eventually one arrives at uniquely determined simple groups by the Jordan–Hölder theorem.

Read more about Simple Group:  Structure of Finite Simple Groups, History For Finite Simple Groups, Tests For Nonsimplicity

Famous quotes containing the words simple and/or group:

    Whenever a person strives, by the help of dialectic, to start in pursuit of every reality by a simple process of reason, independent of all sensuous information—never flinching, until by an act of the pure intelligence he has grasped the real nature of good—he arrives at the very end of the intellectual world.
    Plato (c. 427–347 B.C.)

    The government of the United States at present is a foster-child of the special interests. It is not allowed to have a voice of its own. It is told at every move, “Don’t do that, You will interfere with our prosperity.” And when we ask: “where is our prosperity lodged?” a certain group of gentlemen say, “With us.”
    Woodrow Wilson (1856–1924)