Simple Group

In mathematics, a simple group is a nontrivial group whose only normal subgroups are the trivial group and the group itself. A group that is not simple can be broken into two smaller groups, a normal subgroup and the quotient group, and the process can be repeated. If the group is finite, then eventually one arrives at uniquely determined simple groups by the Jordan–Hölder theorem.

Read more about Simple Group:  Structure of Finite Simple Groups, History For Finite Simple Groups, Tests For Nonsimplicity

Famous quotes containing the words simple and/or group:

    Of course, Behaviorism “works.” So does torture. Give me a no- nonsense, down-to-earth behaviorist, a few drugs, and simple electrical appliances, and in six months I will have him reciting the Athanasian Creed in public.
    —W.H. (Wystan Hugh)

    It’s important to remember that feminism is no longer a group of organizations or leaders. It’s the expectations that parents have for their daughters, and their sons, too. It’s the way we talk about and treat one another. It’s who makes the money and who makes the compromises and who makes the dinner. It’s a state of mind. It’s the way we live now.
    Anna Quindlen (20th century)