Details
Let H be a Hilbert space, L(H) be the bounded operators on H, and V ∈ L(H) be an isometry. The Wold decomposition states that every isometry V takes the form
for some index set A, where S in the unilateral shift on a Hilbert space Hα, and U is an unitary operator (possible vacuous). The family {Hα} consists of isomorphic Hilbert spaces.
A proof can be sketched as follows. Successive applications of V give a descending sequences of copies of H isomorphically embedded in itself:
where V(H) denotes the range of V. The above defined . If one defines
then
It is clear that K1 and K2 are invariant subspaces of V.
So V(K2) = K2. In other words, V restricted to K2 is a surjective isometry, i.e. an unitary operator U.
Furthermore, each Mi is isomorphic to another, with V being an isomorphism between Mi and Mi+1: V "shifts" Mi to Mi+1. Suppose the dimension of each Mi is some cardinal number α. We see that K1 can be written as a direct sum Hilbert spaces
where each Hα is an invariant subspaces of V and V restricted to each Hα is the unilateral shift S. Therefore
which is a Wold decomposition of V.
Read more about this topic: Wold Decomposition
Famous quotes containing the word details:
“If my sons are to become the kind of men our daughters would be pleased to live among, attention to domestic details is critical. The hostilities that arise over housework...are crushing the daughters of my generation....Change takes time, but mens continued obliviousness to home responsibilities is causing women everywhere to expire of trivialities.”
—Mary Kay Blakely (20th century)
“Then he told the news media
the strange details of his death
and they hammered him up in the marketplace
and sold him and sold him and sold him.
My death the same.”
—Anne Sexton (19281974)