Winding Number - Turning Number

Turning Number

One can also consider the winding number of the path with respect to the tangent of the path itself. As a path followed through time, this would be the winding number with respect to the origin of the velocity vector. In this case the example illustrated on the right has a winding number of 4 (or −4), because the small loop is counted.

This is only defined for immersed paths (i.e., for differentiable paths with nowhere vanishing derivatives), and is the degree of the tangential Gauss map.

This is called the turning number, and can be computed as the total curvature divided by 2π.

Read more about this topic:  Winding Number

Famous quotes containing the words turning and/or number:

    And nothing I cared, at my sky blue trades, that time allows
    In all his tuneful turning so few and such morning songs
    Before the children green and golden
    Follow him out of grace.
    Dylan Thomas (1914–1953)

    After mature deliberation of counsel, the good Queen to establish a rule and imitable example unto all posterity, for the moderation and required modesty in a lawful marriage, ordained the number of six times a day as a lawful, necessary and competent limit.
    Michel de Montaigne (1533–1592)