Wigner Semicircle Distribution - General Properties

General Properties

The Chebyshev polynomials of the second kind are orthogonal polynomials with respect to the Wigner semicircle distribution.

For positive integers n, the 2n-th moment of this distribution is

where X is any random variable with this distribution and Cn is the nth Catalan number

so that the moments are the Catalan numbers if R = 2. (Because of symmetry, all of the odd-order moments are zero.)

Making the substitution into the defining equation for the moment generating function it can be seen that:

which can be solved (see Abramowitz and Stegun §9.6.18) to yield:

where is the modified Bessel function. Similarly, the characteristic function is given by:

where is the Bessel function. (See Abramowitz and Stegun §9.1.20), noting that the corresponding integral involving is zero.)

In the limit of approaching zero, the Wigner semicircle distribution becomes a Dirac delta function.

Read more about this topic:  Wigner Semicircle Distribution

Famous quotes containing the words general and/or properties:

    I never saw any people who appeared to live so much without amusement as the Cincinnatians.... Were it not for the churches,... I think there might be a general bonfire of best bonnets, for I never could discover any other use for them.
    Frances Trollope (1780–1863)

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)