Wigner Semicircle Distribution - General Properties

General Properties

The Chebyshev polynomials of the second kind are orthogonal polynomials with respect to the Wigner semicircle distribution.

For positive integers n, the 2n-th moment of this distribution is

where X is any random variable with this distribution and Cn is the nth Catalan number

so that the moments are the Catalan numbers if R = 2. (Because of symmetry, all of the odd-order moments are zero.)

Making the substitution into the defining equation for the moment generating function it can be seen that:

which can be solved (see Abramowitz and Stegun §9.6.18) to yield:

where is the modified Bessel function. Similarly, the characteristic function is given by:

where is the Bessel function. (See Abramowitz and Stegun §9.1.20), noting that the corresponding integral involving is zero.)

In the limit of approaching zero, the Wigner semicircle distribution becomes a Dirac delta function.

Read more about this topic:  Wigner Semicircle Distribution

Famous quotes containing the words general and/or properties:

    That sort of half sigh, which, accompanied by two or three slight nods of the head, is pity’s small change in general society.
    Charles Dickens (1812–1870)

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)