General Properties
The Chebyshev polynomials of the second kind are orthogonal polynomials with respect to the Wigner semicircle distribution.
For positive integers n, the 2n-th moment of this distribution is
where X is any random variable with this distribution and Cn is the nth Catalan number
so that the moments are the Catalan numbers if R = 2. (Because of symmetry, all of the odd-order moments are zero.)
Making the substitution into the defining equation for the moment generating function it can be seen that:
which can be solved (see Abramowitz and Stegun §9.6.18) to yield:
where is the modified Bessel function. Similarly, the characteristic function is given by:
where is the Bessel function. (See Abramowitz and Stegun §9.1.20), noting that the corresponding integral involving is zero.)
In the limit of approaching zero, the Wigner semicircle distribution becomes a Dirac delta function.
Read more about this topic: Wigner Semicircle Distribution
Famous quotes containing the words general and/or properties:
“I never saw any people who appeared to live so much without amusement as the Cincinnatians.... Were it not for the churches,... I think there might be a general bonfire of best bonnets, for I never could discover any other use for them.”
—Frances Trollope (17801863)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)