Borel Measure

Borel Measure

In mathematics, specifically in measure theory, a Borel measure is defined as follows: let X be a locally compact Hausdorff space, and let be the smallest σ-algebra that contains the open sets of X; this is known as the σ-algebra of Borel sets. Any measure μ defined on the σ-algebra of Borel sets is called a Borel measure. Some authors require in addition that μ(C) < ∞ for every compact set C. If a Borel measure μ is both inner regular and outer regular, it is called a regular Borel measure. If μ is both inner regular and locally finite, it is called a Radon measure. Note that a locally finite Borel measure automatically satisfies μ(C) < ∞ for every compact set C.

Read more about Borel Measure:  On The Real Line

Famous quotes containing the word measure:

    What we know partakes in no small measure of the nature of what has so happily been called the unutterable or ineffable, so that any attempt to utter or eff it is doomed to fail, doomed, doomed to fail.
    Samuel Beckett (1906–1989)