On The Real Line
The real line R with its usual topology is a locally compact Hausdorff space, hence we can define a Borel measure on it. In this case, is the smallest σ-algebra that contains the open intervals of R. While there are many Borel measures μ, the choice of Borel measure which assigns for every interval is sometimes called "the" Borel measure on R. In practice, even "the" Borel measure is not the most useful measure defined on the σ-algebra of Borel sets; indeed, the Lebesgue measure is an extension of "the" Borel measure which possesses the crucial property that it is a complete measure (unlike the Borel measure). To clarify, when one says that the Lebesgue measure is an extension of the Borel measure, it means that every Borel measurable set E is also a Lebesgue measurable set, and the Borel measure and the Lebesgue measure coincide on the Borel sets (i.e., for every Borel measurable set).
Read more about this topic: Borel Measure
Famous quotes containing the words real and/or line:
“In the twentieth century, death terrifies men less than the absence of real life. All these dead, mechanized, specialized actions, stealing a little bit of life a thousand times a day until the mind and body are exhausted, until that death which is not the end of life but the final saturation with absence.”
—Raoul Vaneigem (b. 1934)
“For as the interposition of a rivulet, however small, will occasion the line of the phalanx to fluctuate, so any trifling disagreement will be the cause of seditions; but they will not so soon flow from anything else as from the disagreement between virtue and vice, and next to that between poverty and riches.”
—Aristotle (384322 B.C.)