Induction and Recursion
An important reason that well-founded relations are interesting is because a version of transfinite induction can be used on them: if (X, R) is a well-founded relation, P(x) is some property of elements of X, and we want to show that
- P(x) holds for all elements x of X,
it suffices to show that:
- If x is an element of X and P(y) is true for all y such that y R x, then P(x) must also be true.
That is,
Well-founded induction is sometimes called Noetherian induction, after Emmy Noether.
On par with induction, well-founded relations also support construction of objects by transfinite recursion. Let (X, R) be a set-like well-founded relation, and F a function, which assigns an object F(x, g) to each pair of an element x ∈ X and a function g on the initial segment {y: y R x} of X. Then there is a unique function G such that for every x ∈ X,
That is, if we want to construct a function G on X, we may define G(x) using the values of G(y) for y R x.
As an example, consider the well-founded relation (N, S), where N is the set of all natural numbers, and S is the graph of the successor function x → x + 1. Then induction on S is the usual mathematical induction, and recursion on S gives primitive recursion. If we consider the order relation (N, <), we obtain complete induction, and course-of-values recursion. The statement that (N, <) is well-founded is also known as the well-ordering principle.
There are other interesting special cases of well-founded induction. When the well-founded relation is the usual ordering on the class of all ordinal numbers, the technique is called transfinite induction. When the well-founded set is a set of recursively-defined data structures, the technique is called structural induction. When the well-founded relation is set membership on the universal class, the technique is known as ∈-induction. See those articles for more details.
Read more about this topic: Well-founded Relation
Famous quotes containing the words induction and and/or induction:
“One might get the impression that I recommend a new methodology which replaces induction by counterinduction and uses a multiplicity of theories, metaphysical views, fairy tales, instead of the customary pair theory/observation. This impression would certainly be mistaken. My intention is not to replace one set of general rules by another such set: my intention is rather to convince the reader that all methodologies, even the most obvious ones, have their limits.”
—Paul Feyerabend (19241994)
“One might get the impression that I recommend a new methodology which replaces induction by counterinduction and uses a multiplicity of theories, metaphysical views, fairy tales, instead of the customary pair theory/observation. This impression would certainly be mistaken. My intention is not to replace one set of general rules by another such set: my intention is rather to convince the reader that all methodologies, even the most obvious ones, have their limits.”
—Paul Feyerabend (19241994)