Well-founded Relation
In mathematics, a binary relation, R, is well-founded (or wellfounded) on a class X if and only if every non-empty subset of X has a minimal element with respect to R; that is, for every non-empty subset S of X, there is an element m of S such that for every element s of S, the pair (s,m) is not in R:
(Some authors include an extra condition that R is set-like, i.e., that the elements less than any given element form a set.)
Equivalently, assuming some choice, a relation is well-founded if and only if it contains no countable infinite descending chains: that is, there is no infinite sequence x0, x1, x2, ... of elements of X such that xn+1 R xn for every natural number n.
In order theory, a partial order is called well-founded if the corresponding strict order is a well-founded relation. If the order is a total order then it is called a well-order.
In set theory, a set x is called a well-founded set if the set membership relation is well-founded on the transitive closure of x. The axiom of regularity, which is one of the axioms of Zermelo–Fraenkel set theory, asserts that all sets are well-founded.
A relation R is converse well-founded, upwards well-founded or Noetherian on X, if the converse relation R-1 is well-founded on X. In this case R is also said to satisfy the ascending chain condition.
Read more about Well-founded Relation: Induction and Recursion, Examples, Other Properties, Reflexivity
Famous quotes containing the word relation:
“The instincts of the ant are very unimportant, considered as the ants; but the moment a ray of relation is seen to extend from it to man, and the little drudge is seen to be a monitor, a little body with a mighty heart, then all its habits, even that said to be recently observed, that it never sleeps, become sublime.”
—Ralph Waldo Emerson (18031882)