Wave Equation - Scalar Wave Equation in Two Space Dimensions

Scalar Wave Equation in Two Space Dimensions

In two space dimensions, the wave equation is

We can use the three-dimensional theory to solve this problem if we regard u as a function in three dimensions that is independent of the third dimension. If

then the three-dimensional solution formula becomes

where α and β are the first two coordinates on the unit sphere, and dω is the area element on the sphere. This integral may be rewritten as an integral over the disc D with center (x,y) and radius ct:

It is apparent that the solution at (t,x,y) depends not only on the data on the light cone where

but also on data that are interior to that cone.

Read more about this topic:  Wave Equation

Famous quotes containing the words wave, equation, space and/or dimensions:

    I hear
    the tide turning. Last
    eager wave over-
    taken and pulled back
    by first wave of the ebb.
    Denise Levertov (b. 1923)

    Jail sentences have many functions, but one is surely to send a message about what our society abhors and what it values. This week, the equation was twofold: female infidelity twice as bad as male abuse, the life of a woman half as valuable as that of a man. The killing of the woman taken in adultery has a long history and survives today in many cultures. One of those is our own.
    Anna Quindlen (b. 1952)

    ... the movie woman’s world is designed to remind us that a woman may live in a mansion, an apartment, or a yurt, but it’s all the same thing because what she really lives in is the body of a woman, and that body is allowed to occupy space only according to the dictates of polite society.
    Jeanine Basinger (b. 1936)

    It seems to me that we do not know nearly enough about ourselves; that we do not often enough wonder if our lives, or some events and times in our lives, may not be analogues or metaphors or echoes of evolvements and happenings going on in other people?—or animals?—even forests or oceans or rocks?—in this world of ours or, even, in worlds or dimensions elsewhere.
    Doris Lessing (b. 1919)