Gaussian Beam

In optics, a Gaussian beam is a beam of electromagnetic radiation whose transverse electric field and intensity (irradiance) distributions are well approximated by Gaussian functions. Many lasers emit beams that approximate a Gaussian profile, in which case the laser is said to be operating on the fundamental transverse mode, or "TEM00 mode" of the laser's optical resonator. When refracted by a diffraction-limited lens, a Gaussian beam is transformed into another Gaussian beam (characterized by a different set of parameters), which explains why it is a convenient, widespread model in laser optics.

The mathematical function that describes the Gaussian beam is a solution to the paraxial form of the Helmholtz equation. The solution, in the form of a Gaussian function, represents the complex amplitude of the beam's electric field. The electric field and magnetic field together propagate as an electromagnetic wave. A description of just one of the two fields is sufficient to describe the properties of the beam.

The behavior of the field of a Gaussian beam as it propagates is described by a few parameters such as the spot size, the radius of curvature, and the Gouy phase.

Other solutions to the paraxial form of the Helmholtz equation exist. Solving the equation in Cartesian coordinates leads to a family of solutions known as the Hermite–Gaussian modes, while solving the equation in cylindrical coordinates leads to the Laguerre–Gaussian modes. For both families, the lowest-order solution describes a Gaussian beam, while higher-order solutions describe higher-order transverse modes in an optical resonator.

Read more about Gaussian Beam:  Mathematical Form, Beam Parameters, Derivation, Higher-order Modes

Famous quotes containing the word beam: