Von Neumann Universe - V and Set Theory

V and Set Theory

If ω is the set of natural numbers, then Vω is the set of hereditarily finite sets, which is a model of set theory without the axiom of infinity. Vω+ω is the universe of "ordinary mathematics", and is a model of Zermelo set theory. If κ is an inaccessible cardinal, then Vκ is a model of Zermelo-Fraenkel set theory (ZFC) itself, and Vκ+1 is a model of Morse–Kelley set theory.

V is not "the set of all sets" for two reasons. First, it is not a set; although each individual stage Vα is a set, their union V is a proper class. Second, the sets in V are only the well-founded sets. The axiom of foundation (or regularity) demands that every set is well founded and hence in V, and thus in ZFC every set is in V. But other axiom systems may omit the axiom of foundation or replace it by a strong negation (for example is Aczel's anti-foundation axiom). These non-well-founded set theories are not commonly employed, but are still possible to study.

Read more about this topic:  Von Neumann Universe

Famous quotes containing the words set and/or theory:

    Where be your gibes now, your gambols, your songs, your
    flashes of merriment, that were wont to set the table on a
    roar?
    William Shakespeare (1564–1616)

    We have our little theory on all human and divine things. Poetry, the workings of genius itself, which, in all times, with one or another meaning, has been called Inspiration, and held to be mysterious and inscrutable, is no longer without its scientific exposition. The building of the lofty rhyme is like any other masonry or bricklaying: we have theories of its rise, height, decline and fall—which latter, it would seem, is now near, among all people.
    Thomas Carlyle (1795–1881)