Von Mises Distribution

In probability theory and directional statistics, the von Mises distribution (also known as the circular normal distribution or Tikhonov distribution) is a continuous probability distribution on the circle. It is a close approximation to the wrapped normal distribution, which is the circular analogue of the normal distribution. A freely diffusing angle on a circle is a wrapped normally distributed random variable with an unwrapped variance that grows linearly in time. On the other hand, the von Mises distribution is the stationary distribution of a drift and diffusion process on the circle in a harmonic potential, i.e. with a preferred orientation. The von Mises distribution is the maximum entropy distribution for a given expectation value of . The von Mises distribution is a special case of the von Mises–Fisher distribution on the N-dimensional sphere.

Read more about Von Mises Distribution:  Definition, Moments, Limiting Behavior, Estimation of Parameters, Distribution of The Mean, Entropy

Famous quotes containing the words von and/or distribution:

    To be sure, we have inherited abilities, but our development we owe to thousands of influences coming from the world around us from which we appropriate what we can and what is suitable to us.
    —Johann Wolfgang Von Goethe (1749–1832)

    The man who pretends that the distribution of income in this country reflects the distribution of ability or character is an ignoramus. The man who says that it could by any possible political device be made to do so is an unpractical visionary. But the man who says that it ought to do so is something worse than an ignoramous and more disastrous than a visionary: he is, in the profoundest Scriptural sense of the word, a fool.
    George Bernard Shaw (1856–1950)