Volume Form - Invariants of A Volume Form

Invariants of A Volume Form

Volume forms are not unique; they form a torsor over non-vanishing functions on the manifold, as follows. Given a non-vanishing function f on M, and a volume form, is a volume form on M. Conversely, given two volume forms, their ratio is a non-vanishing function (positive if they define the same orientation, negative if they define opposite orientations).

In coordinates, they are both simply a non-zero function times Lebesgue measure, and their ratio is the ratio of the functions, which is independent of choice of coordinates. Intrinsically, it is the Radon–Nikodym derivative of with respect to . On an oriented manifold, the proportionality of any two volume forms can be thought of as a geometric form of the Radon–Nikodym theorem.

Read more about this topic:  Volume Form

Famous quotes containing the words volume and/or form:

    A German immersed in any civilization different from his own loses a weight equivalent in volume to the amount of intelligence he displaces.
    José Bergamín (1895–1983)

    A criminal trial is like a Russian novel: it starts with exasperating slowness as the characters are introduced to a jury, then there are complications in the form of minor witnesses, the protagonist finally appears and contradictions arise to produce drama, and finally as both jury and spectators grow weary and confused the pace quickens, reaching its climax in passionate final argument.
    Clifford Irving (b. 1930)