Invariants of A Volume Form
Volume forms are not unique; they form a torsor over non-vanishing functions on the manifold, as follows. Given a non-vanishing function f on M, and a volume form, is a volume form on M. Conversely, given two volume forms, their ratio is a non-vanishing function (positive if they define the same orientation, negative if they define opposite orientations).
In coordinates, they are both simply a non-zero function times Lebesgue measure, and their ratio is the ratio of the functions, which is independent of choice of coordinates. Intrinsically, it is the Radon–Nikodym derivative of with respect to . On an oriented manifold, the proportionality of any two volume forms can be thought of as a geometric form of the Radon–Nikodym theorem.
Read more about this topic: Volume Form
Famous quotes containing the words volume and/or form:
“A tattered copy of Johnsons large Dictionary was a great delight to me, on account of the specimens of English versifications which I found in the Introduction. I learned them as if they were so many poems. I used to keep this old volume close to my pillow; and I amused myself when I awoke in the morning by reciting its jingling contrasts of iambic and trochaic and dactylic metre, and thinking what a charming occupation it must be to make up verses.”
—Lucy Larcom (18241893)
“Now what I want is, Facts. Teach these boys and girls nothing but Facts. Facts alone are wanted in life. Plant nothing else, and root out everything else. You can only form the minds of reasoning animals upon Facts: nothing else will ever be of service to them.”
—Charles Dickens (18121870)