Volume Form - Invariants of A Volume Form

Invariants of A Volume Form

Volume forms are not unique; they form a torsor over non-vanishing functions on the manifold, as follows. Given a non-vanishing function f on M, and a volume form, is a volume form on M. Conversely, given two volume forms, their ratio is a non-vanishing function (positive if they define the same orientation, negative if they define opposite orientations).

In coordinates, they are both simply a non-zero function times Lebesgue measure, and their ratio is the ratio of the functions, which is independent of choice of coordinates. Intrinsically, it is the Radon–Nikodym derivative of with respect to . On an oriented manifold, the proportionality of any two volume forms can be thought of as a geometric form of the Radon–Nikodym theorem.

Read more about this topic:  Volume Form

Famous quotes containing the words volume and/or form:

    I dare say I am compelled, unconsciously compelled, now to write volume after volume, as in past years I was compelled to go to sea, voyage after voyage. Leaves must follow upon each other as leagues used to follow in the days gone by, on and on to the appointed end, which, being Truth itself, is One—one for all men and for all occupations.
    Joseph Conrad (1857–1924)

    The Same, the Same: friend and foe are of one stuff; the ploughman, the plough, and the furrow, are of one stuff; and the stuff is such, and so much, that the variations of form are unimportant.
    Ralph Waldo Emerson (1803–1882)