Invariants of A Volume Form
Volume forms are not unique; they form a torsor over non-vanishing functions on the manifold, as follows. Given a non-vanishing function f on M, and a volume form, is a volume form on M. Conversely, given two volume forms, their ratio is a non-vanishing function (positive if they define the same orientation, negative if they define opposite orientations).
In coordinates, they are both simply a non-zero function times Lebesgue measure, and their ratio is the ratio of the functions, which is independent of choice of coordinates. Intrinsically, it is the Radon–Nikodym derivative of with respect to . On an oriented manifold, the proportionality of any two volume forms can be thought of as a geometric form of the Radon–Nikodym theorem.
Read more about this topic: Volume Form
Famous quotes containing the words volume and/or form:
“She carries a book but it is not
the tome of the ancient wisdom,
the pages, I imagine, are the blank pages
of the unwritten volume of the new.”
—Hilda Doolittle (18861961)
“People sometimes inquire what form of government is most suitable for an artist to live under. To this question there is only one answer. The form of government that is most suitable to the artist is no government at all.”
—Oscar Wilde (18541900)