Volume Element

In mathematics, a volume element provides a means for integrating a function with respect to volume in various coordinate systems such as spherical coordinates and cylindrical coordinates. Thus a volume element is an expression of the form

where the are the coordinates, so that the volume of any set can be computed by

For example, in spherical coordinates, and so .

The notion of a volume element is not limited to three-dimensions: in two-dimensions it is often known as the area element, and in this setting it is useful for doing surface integrals. Under changes of coordinates, the volume element changes by the absolute value of the Jacobian determinant of the coordinate transformation (by the change of variables formula). This fact allows volume elements to be defined as a kind of measure on a manifold. On an orientable differentiable manifold, a volume element typically arises from a volume form: a top degree differential form. On a non-orientable manifold, the volume element is typically the absolute value of a (locally defined) volume form: it defines a 1-density.

Famous quotes containing the words volume and/or element:

    Bishop Berkeley destroyed this world in one volume octavo; and nothing remained, after his time, but mind; which experienced a similar fate from the hand of Hume in 1737.
    Sydney Smith (1771–1845)

    Beauty is composed of an eternal, invariable element whose quantity is extremely difficult to determine, and a relative element which might be, either by turns or all at once, period, fashion, moral, passion.
    Jean-Luc Godard (b. 1930)