In mathematics, Volterra's function, named for Vito Volterra, is a real-valued function V defined on the real line R with the following curious combination of properties:
- V is differentiable everywhere
- The derivative V ′ is bounded everywhere
- The derivative is not Riemann-integrable.
Read more about Volterra's Function: Definition and Construction, Further Properties
Famous quotes containing the word function:
“The function of the actor is to make the audience imagine for the moment that real things are happening to real people.”
—George Bernard Shaw (18561950)