In mathematics, Volterra's function, named for Vito Volterra, is a real-valued function V defined on the real line R with the following curious combination of properties:
- V is differentiable everywhere
- The derivative V ′ is bounded everywhere
- The derivative is not Riemann-integrable.
Read more about Volterra's Function: Definition and Construction, Further Properties
Famous quotes containing the word function:
“No one, however powerful and successful, can function as an adult if his parents are not satisfied with him.”
—Frank Pittman (20th century)