Veronese Surface - Veronese Map

The Veronese map or Veronese variety generalizes this idea to mappings of general degree d in n+1 variables. That is, the Veronese map of degree d is the map

with m given by the multiset coefficient, more familiarly the binomial coefficient, or more elegantly the rising factorial, as:

The map sends to all possible monomials of total degree d, thus the appearance of combinatorial functions; the and are due to projectivization. The last expression shows that for fixed source dimension n, the target dimension is a polynomial in d of degree n and leading coefficient

For low degree, is the trivial constant map to and is the identity map on so d is generally taken to be 2 or more.

One may define the Veronese map in a coordinate-free way, as

where V is any vector space of finite dimension, and are its symmetric powers of degree d. This is homogeneous of degree d under scalar multiplication on V, and therefore passes to a mapping on the underlying projective spaces.

If the vector space V is defined over a field K which does not have characteristic zero, then the definition must be altered to be understood as a mapping to the dual space of polynomials on V. This is because for fields with finite characteristic p, the pth powers of elements of V are not rational normal curves, but are of course a line. (See, for example additive polynomial for a treatment of polynomials over a field of finite characteristic).

Read more about this topic:  Veronese Surface

Famous quotes containing the word map:

    When I had mapped the pond ... I laid a rule on the map lengthwise, and then breadthwise, and found, to my surprise, that the line of greatest length intersected the line of greatest breadth exactly at the point of greatest depth.
    Henry David Thoreau (1817–1862)