In mathematics, the rational normal curve is a smooth, rational curve of degree n in projective n-space It is a simple example of a projective variety; formally, it is the Veronese variety when the domain is the projective line. For n=2 it is the flat conic and for n=3 it is the twisted cubic. The term "normal" is an old term meaning that the linear system defining the embedding is complete (and has nothing to do with normal schemes). The intersection of the rational normal curve with an affine space is called the moment curve.
Read more about Rational Normal Curve: Definition, Alternate Parameterization, Properties
Famous quotes containing the words rational, normal and/or curve:
“... there is no such thing as a rational world and a separate irrational world, but only one world containing both.”
—Robert Musil (18801942)
“We have been weakened in our resistance to the professional anti-Communists because we know in our hearts that our so-called democracy has excluded millions of citizens from a normal life and the normal American privileges of health, housing and education.”
—Agnes E. Meyer (18871970)
“I have been photographing our toilet, that glossy enameled receptacle of extraordinary beauty.... Here was every sensuous curve of the human figure divine but minus the imperfections. Never did the Greeks reach a more significant consummation to their culture, and it somehow reminded me, in the glory of its chaste convulsions and in its swelling, sweeping, forward movement of finely progressing contours, of the Victory of Samothrace.”
—Edward Weston (18861958)