Vector Flow in Riemannian Geometry
Relevant concepts: (geodesic, exponential map, injectivity radius)
The exponential map
- exp : TpM → M
is defined as exp(X) = γ(1) where γ : I → M is the unique geodesic passing through p at 0 and whose tangent vector at 0 is X. Here I is the maximal open interval of R for which the geodesic is defined.
Let M be a pseudo-Riemannian manifold (or any manifold with an affine connection) and let p be a point in M. Then for every V in TpM there exists a unique geodesic γ : I → M for which γ(0) = p and Let Dp be the subset of TpM for which 1 lies in I.
Read more about this topic: Vector Flow
Famous quotes containing the words flow and/or geometry:
“The current of our thoughts made as sudden bends as the river, which was continually opening new prospects to the east or south, but we are aware that rivers flow most rapidly and shallowest at these points.”
—Henry David Thoreau (18171862)
“The geometry of landscape and situation seems to create its own systems of time, the sense of a dynamic element which is cinematising the events of the canvas, translating a posture or ceremony into dynamic terms. The greatest movie of the 20th century is the Mona Lisa, just as the greatest novel is Grays Anatomy.”
—J.G. (James Graham)