Flow Curves
Consider the flow of a fluid through a region of space. At any given time, any point of the fluid has a particular velocity associated with it; thus there is a vector field associated to any flow. The converse is also true: it is possible to associate a flow to a vector field having that vector field as its velocity.
Given a vector field V defined on S, one defines curves γ(t) on S such that for each t in an interval I
By the Picard–Lindelöf theorem, if V is Lipschitz continuous there is a unique C1-curve γx for each point x in S so that
The curves γx are called flow curves of the vector field V and partition S into equivalence classes. It is not always possible to extend the interval (−ε, +ε) to the whole real number line. The flow may for example reach the edge of S in a finite time. In two or three dimensions one can visualize the vector field as giving rise to a flow on S. If we drop a particle into this flow at a point p it will move along the curve γp in the flow depending on the initial point p. If p is a stationary point of V then the particle will remain at p.
Typical applications are streamline in fluid, geodesic flow, and one-parameter subgroups and the exponential map in Lie groups.
Read more about this topic: Vector Field
Famous quotes containing the words flow and/or curves:
“Clay answered the petition by declaring that while he looked on the institution of slavery as an evil, it was nothing in comparison with the far greater evil which would inevitably flow from a sudden and indiscriminate emancipation.”
—State of Indiana, U.S. public relief program (1935-1943)
“For a hundred and fifty years, in the pasture of dead horses,
roots of pine trees pushed through the pale curves of your ribs,
yellow blossoms flourished above you in autumn, and in winter
frost heaved your bones in the groundold toilers, soil makers:
O Roger, Mackerel, Riley, Ned, Nellie, Chester, Lady Ghost.”
—Donald Hall (b. 1928)