Line Integral

In mathematics, a line integral (sometimes called a path integral, contour integral, or curve integral; not to be confused with calculating arc length using integration) is an integral where the function to be integrated is evaluated along a curve.

The function to be integrated may be a scalar field or a vector field. The value of the line integral is the sum of values of the field at all points on the curve, weighted by some scalar function on the curve (commonly arc length or, for a vector field, the scalar product of the vector field with a differential vector in the curve). This weighting distinguishes the line integral from simpler integrals defined on intervals. Many simple formulae in physics (for example, W=F·s) have natural continuous analogs in terms of line integrals (W=∫C F· ds). The line integral finds the work done on an object moving through an electric or gravitational field, for example.

Read more about Line Integral:  Vector Calculus, Complex Line Integral, Quantum Mechanics

Famous quotes containing the words line and/or integral:

    Anybody who’s been through a divorce will tell you that at one point ... they’ve thought murder. The line between thinking murder and doing murder isn’t that major.
    Oliver Stone (b. 1946)

    Self-centeredness is a natural outgrowth of one of the toddler’s major concerns: What is me and what is mine...? This is why most toddlers are incapable of sharing ... to a toddler, what’s his is what he can get his hands on.... When something is taken away from him, he feels as though a piece of him—an integral piece—is being torn from him.
    Lawrence Balter (20th century)