Line Integral

In mathematics, a line integral (sometimes called a path integral, contour integral, or curve integral; not to be confused with calculating arc length using integration) is an integral where the function to be integrated is evaluated along a curve.

The function to be integrated may be a scalar field or a vector field. The value of the line integral is the sum of values of the field at all points on the curve, weighted by some scalar function on the curve (commonly arc length or, for a vector field, the scalar product of the vector field with a differential vector in the curve). This weighting distinguishes the line integral from simpler integrals defined on intervals. Many simple formulae in physics (for example, W=F·s) have natural continuous analogs in terms of line integrals (W=∫C F· ds). The line integral finds the work done on an object moving through an electric or gravitational field, for example.

Read more about Line Integral:  Vector Calculus, Complex Line Integral, Quantum Mechanics

Famous quotes containing the words line and/or integral:

    Any walk through a park that runs between a double line of mangy trees and passes brazenly by the ladies’ toilet is invariably known as “Lover’s Lane.”
    F. Scott Fitzgerald (1896–1940)

    Painting myself for others, I have painted my inward self with colors clearer than my original ones. I have no more made my book than my book has made me—a book consubstantial with its author, concerned with my own self, an integral part of my life; not concerned with some third-hand, extraneous purpose, like all other books.
    Michel de Montaigne (1533–1592)