Definition and First Consequences
A real vector bundle consists of:
- topological spaces X (base space) and E (total space)
- a continuous surjection π : E → X (bundle projection)
- for every x in X, the structure of a finite-dimensional real vector space on the fiber π−1({x})
where the following compatibility condition is satisfied: for every point in X, there is an open neighborhood U, a natural number k, and a homeomorphism
such that for all x ∈ U,
- (π∘φ)(x,v) = x for all vectors v in Rk, and
- the map v ↦ φ(x,v) is an isomorphism between the vector spaces Rk and π−1({x}).
The open neighborhood U together with the homeomorphism φ is called a local trivialization of the vector bundle. The local trivialization shows that locally the map π "looks like" the projection of U × Rk on U.
Every fiber π−1({x}) is a finite-dimensional real vector space and hence has a dimension kx. The local trivializations show that the function x ↦ kx is locally constant, and is therefore constant on each connected component of X. If kx is equal to a constant k on all of X, then k is called the rank of the vector bundle, and E is said to be a vector bundle of rank k. Often the definition of a vector bundle includes that the rank is well defined, so that kx is constant. Vector bundles of rank 1 are called line bundles, while those of rank 2 are less commonly called plane bundles.
The Cartesian product X × Rk, equipped with the projection X × Rk → X, is called the trivial bundle of rank k over X.
Read more about this topic: Vector Bundle
Famous quotes containing the words definition and/or consequences:
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)
“If you are prepared to accept the consequences of your dreams ... then you must still regard America today with the same naive enthusiasm as the generations that discovered the New World.”
—Jean Baudrillard (b. 1929)