Vector Bundle - Definition and First Consequences

Definition and First Consequences

A real vector bundle consists of:

  1. topological spaces X (base space) and E (total space)
  2. a continuous surjection π : EX (bundle projection)
  3. for every x in X, the structure of a finite-dimensional real vector space on the fiber π−1({x})

where the following compatibility condition is satisfied: for every point in X, there is an open neighborhood U, a natural number k, and a homeomorphism

such that for all xU,

  • (π∘φ)(x,v) = x for all vectors v in Rk, and
  • the map v ↦ φ(x,v) is an isomorphism between the vector spaces Rk and π−1({x}).

The open neighborhood U together with the homeomorphism φ is called a local trivialization of the vector bundle. The local trivialization shows that locally the map π "looks like" the projection of U × Rk on U.

Every fiber π−1({x}) is a finite-dimensional real vector space and hence has a dimension kx. The local trivializations show that the function xkx is locally constant, and is therefore constant on each connected component of X. If kx is equal to a constant k on all of X, then k is called the rank of the vector bundle, and E is said to be a vector bundle of rank k. Often the definition of a vector bundle includes that the rank is well defined, so that kx is constant. Vector bundles of rank 1 are called line bundles, while those of rank 2 are less commonly called plane bundles.

The Cartesian product X × Rk, equipped with the projection X × RkX, is called the trivial bundle of rank k over X.

Read more about this topic:  Vector Bundle

Famous quotes containing the words definition and/or consequences:

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)

    There is not much that even the most socially responsible scientists can do as individuals, or even as a group, about the social consequences of their activities.
    Eric J. Hobsbawm (b. 1917)