Definition and First Consequences
A real vector bundle consists of:
- topological spaces X (base space) and E (total space)
- a continuous surjection π : E → X (bundle projection)
- for every x in X, the structure of a finite-dimensional real vector space on the fiber π−1({x})
where the following compatibility condition is satisfied: for every point in X, there is an open neighborhood U, a natural number k, and a homeomorphism
such that for all x ∈ U,
- (π∘φ)(x,v) = x for all vectors v in Rk, and
- the map v ↦ φ(x,v) is an isomorphism between the vector spaces Rk and π−1({x}).
The open neighborhood U together with the homeomorphism φ is called a local trivialization of the vector bundle. The local trivialization shows that locally the map π "looks like" the projection of U × Rk on U.
Every fiber π−1({x}) is a finite-dimensional real vector space and hence has a dimension kx. The local trivializations show that the function x ↦ kx is locally constant, and is therefore constant on each connected component of X. If kx is equal to a constant k on all of X, then k is called the rank of the vector bundle, and E is said to be a vector bundle of rank k. Often the definition of a vector bundle includes that the rank is well defined, so that kx is constant. Vector bundles of rank 1 are called line bundles, while those of rank 2 are less commonly called plane bundles.
The Cartesian product X × Rk, equipped with the projection X × Rk → X, is called the trivial bundle of rank k over X.
Read more about this topic: Vector Bundle
Famous quotes containing the words definition and/or consequences:
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“There are more consequences to a shipwreck than the underwriters notice.”
—Henry David Thoreau (18171862)