Additional Structures and Generalizations
Vector bundles are often given more structure. For instance, vector bundles may be equipped with a vector bundle metric. Usually this metric is required to be positive definite, in which case each fibre of E becomes a Euclidean space. A vector bundle with a complex structure corresponds to a complex vector bundle, which may also be obtained by replacing real vector spaces in the definition with complex ones and requiring that all mappings be complex-linear in the fibers. More generally, one can typically understand the additional structure imposed on a vector bundle in terms of the resulting reduction of the structure group of a bundle. Vector bundles over more general topological fields may also be used.
If instead of a finite-dimensional vector space, if the fiber F is taken to be a Banach space then a Banach bundle is obtained. Specifically, one must require that the local trivializations are Banach space isomorphisms (rather than just linear isomorphisms) on each of the fibers and that, furthermore, the transitions
are continuous mappings of Banach manifolds. In the corresponding theory for Cp bundles, all mappings are required to be Cp.
Vector bundles are special fiber bundles, those whose fibers are vector spaces and whose cocycle respects the vector space structure. More general fiber bundles can be constructed in which the fiber may have other structures; for example sphere bundles are fibered by spheres.
Read more about this topic: Vector Bundle
Famous quotes containing the words additional and/or structures:
“Dog. A kind of additional or subsidiary Deity designed to catch the overflow and surplus of the worlds worship.”
—Ambrose Bierce (18421914)
“The philosopher believes that the value of his philosophy lies in its totality, in its structure: posterity discovers it in the stones with which he built and with which other structures are subsequently built that are frequently betterand so, in the fact that that structure can be demolished and yet still possess value as material.”
—Friedrich Nietzsche (18441900)